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1. Introduction

Fiber reinforced composites have been used for about two decades for improving the burst (due
to internal pressure) and collapse pressure (due to external pressure) of spherical pressure vessels

[1-31. Although several reinforcing patterns had been tried in the past, for example radial

filament reinforcement [3], the accepted technology for reinforcing spherical vessels has emerged
to be the quasi-isotropic lay-ups in the 0-0 plane (0: colatitude, : azimuth) (Figure 1).

z

r 0r

0

X

Figure 1. Coordinate System

Gerstle [41 has reported the stress and strength analysis of single-layered fiber reinforced
spherical vessels with elastic-ideally plastic bladder. In his work the layer of a vessel is

considered to be composed of quasi-isotropic lay-ups of one type of material. Gerstle has found

that the burst pressure of a single-layered vessel is limited by the radial compressive strength of

the vessel. The radial compressive strength of these vessels, incidentally, is related to the

stiffness and transverse compressive strength of the laminae used in the lay-ups. Thus one
logical way of improving the failure pressure is to make hybrid vessels where an optimal use of

the stiffnesses and strengths of the layers is expected to improve the failure pressure. Gerstle 15]
has then presented a similar work for two-layered hybrid spherical vessels and has shown a way

to use the stiffnesses and strengths of the two hybrid layers in improving the burst pressure over

that of a single-layered vessel. The work presented here is in a way an extension of Gerstle's

work and is applicable to any number of layers.



2. Equations for Stresses and Strains for Multilayer Spheres

The effective properties of the layers of a spherical vessel with quasi-isotropic lay-ups are

transversely isotropic with isotropy in the the 0- plane (Figure 1). The vessel is considered

spherically symmetric. The stress-strain relations of the i-th layer of the vessel reduce to [61

i (i) + 2 C(') (i)
=o o (1)

W i) ( W 4) W( i) (i)\ (2)
-- Cro +1 4-[0(. Opol- 0  (2)

8 r rO 88(3

4i) _ __ (i) U (i)
d7 - r -' ='0 (5)

Here CiP), SiP), (i, = r, e, 0) are the elements of the three-dimensional effective stiffness and

compliance matrices of the i-th layer respectively. A method of determining the three-

dimensional effective stiffnesses and compliances of a laminate is given in reference [7] and is

summarized in Appendix A. If the sphere is subjected to both internal and external pressure,

then the boundary conditions are

when r = a err (I) = -p (the negative sign is because of the compressive pressure) (6)

when r = b crrn) = -q (the negative sign is because of the compressive pressure) (7)

At the interface between two adjacent layers the following conditions must be satisfied

at the interface r = ai  crr i) = r (i+1) (8)

ur/i) = u/(i+1)  (9)

If we express the stresses, strains, and displacement in terms of the interlayer normal tractions,

qi, (Figure 2)
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aq~ qi qn-i qn

Figure 2. Cross section of the sphere and interlayer tractions, qj, used in the analysis.

then the expressions for stresses, strains, and displacement of the sphere are:

- ,[ ni+ 2 r j3ajnjj~
1-C7i [2qi c ai r (10)

190) - I _____I_________ 1

2 rr C6 +rO ~ r ,+
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q' (12)

=i ~ 2- qj) 3_( 1  -)(qi-l -qicc4-1) 3

F(jj)q.IC 3 3i+
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e (i) (
=' 0 (15)

U i4') = a___ _Ic5-q-A___. qi-l-qic_-_ i+

r 2n, ri a) ~ i'()r

1-ci n'[ni-2L)C(')+2cio r" (nlc,(r)_-2 C:;c  [r

£2 rO (16)

where

ci= ni 1+8 00 0qC rO

Incidentally, when r a equation (10) becomes

o") (r = ao = a) = -qo = -p (inside pressure) (17)

and when r = b equation (10) again reduces to

o(n) (r = an = b) = -qn = -q (outside pressure) (18)

By expressing the stresses in terms of the interlayer normal tractions, qj, equation (8) is

automatically satisfied. Then substituting equation (16) into equation (9) we get a set of linear

equations to determine the interlayer normal tractions, qi:

qi+ I 0i+1ai+ + qj(Pj+l-Pi - +1- )ai + qi-1 aiai-I = 0
ci+i (19)

i =1, 2.. . , (n-l)

here, qo = p (internal pressure), qn = q (external pressure) are known, and

2niC(y) c f

a i -I

Ii

ni (1 +C2ni) C2(ri
' i

-(I _C7") (ni+-L)C4P,)2C(l(ni-J-)C')+ 2C(')

4



The interlayer normal tractions, (qi, i = 1, .... , n-i), are known by solving equation (19). Then

substituting the values of qi in equations (10-16), the stresses, strains, and displacement for all

layers are determined.

3. Stresses and Strains for Single Layer Spheres

If there is only one material for the spherical shell, super and subscripts in the equations above

assume only one value; i.e., i = 1; then in the inside radius, r = ao = a; and on the outside radius,

r = a, = b. We can define the ratios of the radii as:

= ao - a
a1 b

All equations in the previous section are simplified for the case of one layer of material which can

also represent a homogenized laminated shell.

4. Failure Criterion for Three-Dimensional Laminates

Failure criteria for a three-dimensional body can be easily written down in terms of the most

general quadratic form. There will be a maximum of 15 strength parameters.

A transversely isotropic material is a reasonable representation of a unidirectional composite ply if

the diameter of the fiber is small relative to the thickness of the ply and there are many fibers

randomly distributed in the ply. With this symmetry, the number of strength parameters can be

reduced to eight. If we can further invoke the identity between tension-compression stresses and

pure shear oriented 45-degrees from the former stresses, this additional relation further reduces the

strength parameters in a 3-D transversely isotropic materials to seven.
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* Fijoj+Fiaj = 1, for 3-D contracted notation: 0 q = oUz, Ur = Uzx, Us= Ox9
Fxx2 2 2 + 2Fqqa2 +Frr a 2 +Fsso2 No. parameters_,

+2Fxyaxx +2 Fxz Uxcrz+ 2 Fzcz cTaz+FxOx+FycUy+Fzcyz+Fqaq+Frur+Fs as = 1 - 15

" From symmetry: Fyy = Fzz, Frr = Fss, Fxy = Fxz, FY Fz, Fq = Fr = Fs = 0 - B

FxxU 2 + Fy(o+ Cr )+ FqqO2 + Fss(o 2 2

,2Fxycx(ay+az)+2Fyza az+FxGx+Fy(oy~oz) = 1I

" From transverse isotropy: cr = -az = Q, other oi = 0 7

Fyy(2Q 2)-2FyzQ2 = 1, orQ2 = I or Q=
' 2(Fy- Fyz) ' /2( 1 - Fyz)*

where Fyz = F*,Y Fzz FZ Fz =

Figure 3. 3-D quadratic failure criterion for a transversely isotropic material

Thus the difference between 2- and 3-D quadratic failure criteria for a unidirectional ply is by only

one additional strength parameter. The reduction in the number of strength parameters from 15 to

seven is illustrated in Figure 3.

5. Strength Ar lysis of Spheres

Stress analysis of a spherical shell in 3-D is similar to that for 2-D provided appropriate elastic

moduli and stress-strain relations are used. 3-D analysis will of course require 3-D moduli and 3-
D stress-strain relations. This is illustrated in Figure 4 where over bars represent the average stress

or strain of the 3-D thick laminate. The relation between laminate stress and ply stress is

determined with the knowledge of the laminate compliance and ply stiffness, both in 3-D.
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{} =[3]{U}, where [9] is the 3-D laminate compliance

(a) [C]{}, where [C] is the 3-D ply stiffness

[F1jjcuj]R2 +[Fjaj]R- 1 = 0,

where Fij, Fj are 3-D strength parameters

Assuming unidirectional plies are transversely isotropic:
FxxCx +Fyy(2 + 2F*o~ c or +3a2)+ 2F x< o

+Fss(j2+j2r)+Fx (+ o =

Figure 4. Relations between ply stress and laminate stress in a 3-D thick laminate. The
quadratic failure in 3-D can be applied on a ply-by-ply basis.

In particular, the uniaxial tensile or compressive stress applied along the z-axis can be easily
calculated, and the resulting failure strength can also be calcihttcd using the quadratic criterion.
The interaction term in the isotropic plane F * yz can be show., to have a strong influence on the
uniaxial compressive strength. The back-calculated interaction term for a typical graphite-epoxy
composite is approximately -0.84. This back-calculation is shown in Figure 5 for both thick cross-
ply and 1±45] laminates.

Absolute strengths, Z, MPa Average F*z -0.84

1000 ---

800 - I I '

---- ---- ---- -- \ I - --

. . .. \ . .

T',, ~~21 [t451 " ..I*II". 400 --------- -. . . -' -......... - D -+45] ,
0 M' I0

00400- t "-0 ' o' '

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -1.0 -0 9 -0.8 -0.7 -0.6 -0.5

Normalized interaction term, F*=

Figure 5. The best-fit interaction term in the isotropic plane based on the measured
uniaxial compressive strength.
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It is seen that the quadratic failure criterion required a highly coupled relation. The maximum

stress or maximum strain criterion assumed that interaction between failure modes does not exist.

Based on the test results shown in Figure 5, the predicted maximum compressive strength would

be the same as the transverse compressive strength in a unidirectional ply. The value for most

graphite-epoxy composites would be in the range of 200 MPa. Thus an error of 300 percent is the

result of ignoring failure mode interactions. We therefore believe that the quadratic criterion is

flexible in taking into account such mode interactions; while the maximum stress or maximum

strain criterion is rigidly defined and does not recognize the interactions.

6. Burst and Collapse Pressure of Spheres Made of One Material

The burst and collapse pressures of a thick spherical shell under internal and external pressures

based on strength can be derived using the stress analysis for thick shells coupled with appropriate

failure criteria. In the present study, it is assumed that the shell failure is controlled by strength,not

by buckling. It is further assumed that the shell consists of homogeneous, quasi-isotropic material

with 3-D elastic constants listed in Appendix A.

The predicted burst pressures for typical composite materials are shown in Figure 6. From the

equations of stress and strain, it is observed that they are dependent on the ratio of the outside to

inside radii, not on their absolute values. The displacements on the other hand are functions of the

absolute radii.

8



Burst presssure, MPa

300 i.. ... T3o/52o8

I I I I I I I I I250 ---- - - - -- - -- - - - - -- -..... ... . . ."------ ... ---- .

* I I I I I I I I* ~ 1r16/epoxy
200---T---------------.T I

15 0 ---- ----

I O0 ... . L ... ... . .. >.. > u OD failure "

SO ....o -;' - - . ..* • I D failure
* I I I I I i

0I a I "I

1.0 1.1 1.2 1.3 1.4 1.5

Outside Radius
Inside Radius

Figure 6. The burst pressures of two graphite-epoxy composite spheres as functions of
the ratios of radii.

Open symbols for each material are shown for failure on the outside diameter and solid symbols on
the inside. For thin shells failure occurs on the outside; for thick shells failure occurs on the
inside. Both materials reach some asymptotic strength level, but their functional dependences on

the ratio of radii are different. Below a ratio of 1.35, IM6 has higher burst pressure; above this
ratio, T300 becomes higher. It is therefore not possible to guess what material would be stronger

unless a calculation is made first.

7. Burst Pressure of Hybrid Spheres Made of Two Materials

One of the objectives of this work is to design a composite sphere to operate at 200 MPa. For the

initial design a safety factor of 1.5 was considered. Thus the design of a sphere that could
withstand a maximum pressure of 300 MPa was considered to be a safe design. It was initially

inferred from Figure 6 that a sphere made with T300/5208 composite of b/a=1.5 could take the

pressure close to 300 MPa. As a part of a demonstration of the design, a T300/epoxy sphere of
inner diameter of 240 mm and b/a=1.5 was constructed. The sphere, however, failed prematurely.

A close examination of the video photographs of the test indicated that the failure initiated at the

interface between the liner nozzle and the composites. For this sphere of b/a=1.5, the thickness of

9



the composite was approximately 60 mm. Relating to the complex winding pattern involved in the

vicinity of the liner nozzle of the sphere, the manufacturer (Courtaulds Advanced Materials,

France) pointed out the difficulty in maintaining a good structural integrity of the interface between

the liner nozzle and the composites for such a thickness of the sphere. The above premature failure

may thus be attributed to the poor interface between the nozzle and composites. Incidentally, two

IM6/epoxy spheres of b/a=1.25 and 1.33 of inner diameter of 240 mm were successfully tested

earlier by CEA (Commissariat A rEnergie Atomique, France) where failure pressures were

respectively within 10 and 4% of the predicted pressure- as shown in Figure 7. The failure

pressures of these spheres, incidentally, were much less than our present design objective. One

possible way of L:creasing the failure pressure keeping the same b/a ratio is to consider the design

of hybrid spheres. Thus in view of the previous success in manufacturing sphere of b/a=1.25, a

design restriction of limiting b/a=1.25 was imposed for the design of hybrid spheres.

Composite: IM61Epoxy
300

2 0 .................................. ................................... .. .... .. ....... .. ......... . ...................... .................................* 200

I - 1 0 0 .... ...................... ...... ................................. ................................. .................................. i..................................

(/7
Predicted

* • Tested

1.0 1.1 1.2 1.3 1.4 1.5

OUTER RADIUS
INNER RADIUS

Figure 7. Comparison of the predicted burst pressure with the tested data. Material: IM6/Epoxy

The stress and strength analysis discussed above is applied for the design of two-layered hybrid

spheres made of T300/5208 and IM6/epoxy composites. Both the layers are of quasi-isotropic

laminates. The predictions of the burst pressure as functions of percent of layer thickness, m, are

shown in Figure 8. The notation [(T300)m/(IM6)nl indicates that the inner layer is made of

T300/5208 composite, and thickness of the inner layer is m percent of the total thickness of the

sphere. Obviously, the thickness of the outer layer is (100-m) percent of the total thickness. Thus

10



the sum of m and n becomes 100. When either m or n becomes zero or 100, the sphere is no

longer a hybrid sphere but rather a sphere of one material. It is obvious from the figure that a

hybrid sphere with T300 inside and IM6 outside yields a higher burst pressure than a sphere with

reversed order of the layers. It is also noticed from the figure that, for the hybrid sphere with T300

inside, if the thickness of either of the layers is varied between 20 and 80% of the total thickness,

the variation of the burst pressure is limited to within only 2.5% of 240 MPa. Thus within the

range of 20 to 80% of the layer thickness, any small manufacturing error in the layer thickness will

hardly alter the expected burst pressure.

b/a= 1.25, Quasi-isotropic
280 .. . . . .

© 240 .

01- 200 ... 4- I M6

L
160

IM612 0 .  ...~~~ ~~~.  ...................... .......... .... ......... ....................... i ................. - T 5 0 0

C.. [(IM6)m/(T30O)n]

L

m+n=10

0 20 40 60 80 100

LAYER THICKNESS PERCENT, m
Figure 8. The burst pressure of two hybrid spheres as functions of the layer thickness.

8. Conclusions

We have presented a procedure to determine the stress, strain, and ultimate internal and external

pressures of a homogenized, isotropic spherical shell of any thickness. It can be shown that the

membrane solution would correspond to the tangent of the burst pressure curves in Figure 6

above.

Comparable curves for other materials will require the 3-D elastic moduli and seven strength

parameters needed for the quadratic failure criterion. The collapse pressure of spherical shells

under external pressure can be determined precisely the same way. Only boundary conditions need

to be changed.

11



The required calculation can be easily programmed in a small computer. In fact, a Fortran program
is written to perform the numerical analysis for multilayered (or hybrid) spheres. The instructions

for executing this code are given in appendix B.

12
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Appendix A

Method of Predicting Three-Dimensional Effective Moduli of Laminates:

The sphere is considered to be made of layers with quasi-isotropic lay-ups. The stress analysis is

performed by considering the three-dimensional effective moduli of each layer. The method of
predicting an equivalent homogeneous effective moduli of a laminate is discussed in detail in

reference 171. Briefly, the method is based on matching the boundary displacements of the
homogeneous system with those of the laminated system of three interrelated boundary value
problems (BVP). The BVP are: (a) ring subjected to equal hydrostatic pressure on both

surfaces, (b) cantilever beam under end transverse load, and (c) cantilever beam subjected to
uniformly distributed load on top and bottom surfaces. These interrelated BVP are selected to

predict the effective moduli for in-plane and bending mode of deformation. The analyses for

predicting the effective moduli are given below:

Problem 1. Ring with Hydrostatic Pressure

This problem is used to predict the interlaminar effective moduli of symmetric and orthotropic

laminates for in-plane extension. For a large value of the radius to thickness ratio, r/t (r: radius,

t: thickness), the deformation of the ring approximately represents the in-plane deformation. The

laminated ring and its equivalent homogeneous ring are subjected to equal hydrostatic pressure

on both inner and outer surface, p, as shown in Figure 9. The inner and outer displacements of

the homogeneous ring are matched with those of the laminated ring to obtain effective moduli of
the laminate of the ring. The interlaminar effective elastic constants obtained from this problem

-o -O -0
are E3, V3 1, and V3 2, where vij is the Poisson's ratio for Ei under aj. The superscript 'o' is used
to indicate that the elastic constants are associated with the in-plane deformation.

14



~2.8

i-3 , -.......

b) EQUIVALENT(~) AMINTED INGHOMOGENEOUS RING

Figure 9. Configuration of the laminated and its equivalent homogeneous ring subjected to equal
hydrostatic pressure on the inner and outer surface.

The method of obtaining the radial displacement of the laminated composite ring, u'(r),

(Figure 9a) is given by Lekhnitskii (1968). The subscript Ti indicates the j-th layer of the

laminated ring. We do not find the necessity of repeating the procedure for obtaining the

expression of u'(r) in this report. The expression for the radial displacement of the equivalent

homogeneous ring (whose effective moduli are to be determined, Wagure 9b) is similar to that of

any layer of the laminated ring; that is:

u(r)- p  $nk 23 ((mk+l )( ~)'k- {(-kl~ l +

+ 1 kS 22 I(rnk+ -1 )k(-)'k"+( 1-mk-)kmk+(b)" 1 1r (1

b' / S- , a: inner radius, b: outer radius, and Si (i,j=2,3) are the elements

of the effective compliance matrix.

By equating the inner and outer displacements of the homogeneous ring with those of the

laminated ring, we get two nonlinear equations in k, $22, and $23 as follows:

apriklmk kI(1 k1iIV 0
l $2( m~-m-)-2m-2 k)]-ul~a)= 0 (for r=a, i=l) (A2)

bp -S 2k(2mk+-m2k- 1)-S23( l-m2k)] -u"(b) = 0(frrbin)A3
I -m2k [ 2 frrb ~)(3
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The laminated ring is assumed to have n number of layers in equation (A3). Here S22 is

considered to be known from the laminated plate theory which seems to be a reasonable

assumption. Then S23, k, and hence S33 are solved from equations (A2) and (A3) by the

Newton-Raphson's technique. The laminate effective properties in terms of S22, S23, and S33

are:

o 1 -O S 2 3
3 S33 V32 2 (A4)

The constant '31 can similarly be obtained by rotating the laminate by 90' about the r-axis of the

ring (a 90 degree rotation brings the 1-axis of the laminate with the 0-direction of the ring). The

superscript 'o' is, again, to denote that the effective properties apply for in-plane deformation.

Problem 2: Beam with Transverse End Load

The laminated beam is subjected to an end transverse load, P, which is modeled as an end

transverse shear load. The displacement field of the laminated beam is obtained by considering

the beam in the state of plane stress either in the 1-3 or in the 2-3 plane. The plane of lamination,
-f -f

however, is the 1-2 plane in both cases. From this problem the effective properties, G 13, G 23,
-f -f
v3 1, and V3 2 are estimated. The superscript 'f is used to indicate that the properties are

associated with bending as the dominant mode of deformation.

LOAD, P LOAD, P

or Z (a) LAMINATED BEAM 3or Z (b) HMGNOSBA
........... ............... ................. ........... .... . ..... ....... . . .

. ... ................

CODTIN:h CONDITION (V),1

A A

.... ...................
..... ............... .............. .'...

(c) ENLARGED VIEW OF BOUNDARY CONDITIONS AT POINT A

Figure 10. Configuration of the laminated beam and its equivalent homogeneous beam under
end transverse load.

The expressions for the displacement field can easily be obtained by starting with an Airy

stress function appropriate to this problem. Since the end transverse load, P, is modeled as the

16



transverse shear load, (see Figure 10), it is logical to assume that az is zero everywhere in the

beam. The Airy stress function, Fj(x,z), for a constituent orthotropic lamina of the above

problem for stresses in the (x-z or 1-3) plane, has the form

Fj(x,z) = Ajxz + Bjz 2 + CJxz2 +Djz 3 + Ejxz3  (A5)

where the constants, Aj, Bj, .. ., Ej are associated with the properties of the j-th lamina. After

using the linear stress-strain constitutive relations and the expressions for stresses in terms of the

above stress function, Fj(x,z), the displacement fields of the laminated beam, u (x,z) and
w,(x,z), along the x and z directions respectively, are:

+xz) = Bjs2Z () ) 3

+DjS11 x z +EjSllx+Qjz+RJ (A6)

SAjS(j ) -BjS13xz+CjSO) --X +(J)XZ 2 "

" +IDj[S( z2 S(J)
3 11 13 (A7)

The constants Aj, Bj, .... Ej, Mj, Qj, Rj, for the j-th lamina, are determined from the contact

conditions at the interface of each lamina, boundary traction, P, and the boundary conditions at

the support end, x=L. Here Sij(k) (i,j = 1,3,5) are the elements of the compliance matrix of the

k-th lamina.
Following a similar procedure for equations (A6) and (A7), the expressions for the

displacement fields, uh(x,z) and wh(x,z), for the equivalent homogeneous beam (Figure 10b) for
plane stress in (1-3) or (x-z) plane, keeping a horizontal element at point A (Figure 10) fixed, are:

uh(xz) =  [6S 1  (L2-x2)z+2S1 3z3+S 55(2z3 - 3H2z)

bH3 L 2 (A)

wh(xz) PHl [2Sn (x3-3L-2x+2L3) - 6SI 3 xz2]

where, L,b, and H are the length, width, and depth of both beams, respectively. The effective

compliance matrix for the homogeneous beam, Sij (ij=1,3,5), is to be determined by matching

the boundary displacement of the homogeneous beam with that of the laminated beam.

17



In Problem 1, the elements of the effective compliance matrix, Sip were predicted by matching

the outer and inner displacements of the laminated and homogenized rings exactly. However in

this problem the boundary displacement field of the homogeneous beam is matched with that of

the laminated beam at a discrete number of boundary points by minimizing the error, A:

n

A=Y +[u~1 z)u~ 1 z)+t wh(xj, zj)-Wc(Xjzj) 1 2]
(A10)

where xi,zi are coordinates of the points selected along the boundary of the two beams.

After having estimated the elements of Sij by minimizing A in equation (A 10), the effective

bending stiffness, and interlaminar shear stiffness and Poisson's ratio of an orthotropic and

symmetric laminate for bending mode of deformation are respectively:

E 1 - f = I -f S13
E S I  $55 V 3  11 (All)

The stress analysis in a similar fashion for stresses in the 2-3 plane yields the following

additional effective elastic constants:

-f 1 -f S23623 -5944' v3= 22 (A12)

A sensitivity study was performed on the convergence of the values of the effective properties

by varying the number of points on the boundary. It was found that the bending stiffness and

the interlaminar shear stiffness converged very fast with increasing numbers of points on the

boundary and were practically insensitive to the ratio of the number of points chosen on the

vertical lines to that of the horizontal lines of the boundary. The interlaminar Poisson's ratios

were, however, somewhat sensitive to the latter ratio. We found out that the value of the ratio

equal to one gave a good estimate of the Poisson's ratio, thus this value of the ratio was used in

obtaining the results presented later.

Problem 3: Beam with Uniformly Distributed Load

The beam considered is under uniformly distributed load acting on the top and bottom surfaces

of the beam of intensity q and p, respectively, (Figure 11). Besides all the effective properties

obtained from Problem 2, one more additional property, the interlaminar effective normal
-f

stiffness, E3, is obtained from this problem. The method of predicting the effective moduli in

18



this problem is similar to that of Problem 3 and thus is not discussed. For details one may refer

to reference [71.

LOAD INTENSITY. q LOAD INTENSITY, q

A--LOAD:INTENSITY, P LOAD !; INENIT:Y,:: p - A.-

3 or Z 3 or Z
(a) A~iNTED EAMEQUIVALENT(a) AMINTED EAM 1:))HOMOGENEOUS BEAM

Figure 11. Configuration of the laminated beam and its equivalent homogeneous beam under
uniformly distributed load on the top and bottom surface.

In general, the effective moduli of a laminate depend on the laminate stacking sequence and mode

of deformation. When the laminate contains a large number of sublaminates, the effect of

stacking sequence almost disappears; then the effective moduli become practically independent of
mode of deformation. The values of effective moduli given below are independent of mode of

deformation, thus the superscripts 'o' or ''are omitted from the notations below.

1 ) Three-dimensional properties of T300/5208 composites: [10] (unidirectional lamina)

-Cxx Cxy Cx1 164.2 6.1 6.1 "sx 5 xty Sx 5.5 -1.5 -1.57

C C = 14.3 7.5 Syy Sy = 97.1 -50.5

Czj GPa 14.3 Sz TPa -1  97.1

Cqq 0 0 3.4 0. 0. Ex  
1/xy '/xz 161. 0.02 0.027

Crr 0 = 7.2 0. L',x  Ev L'yr = 0.26 10.3 0.52

C GPa 7.2 Vz I/yE 0.26 0.52 10.3

Cqq = qq - I  Eq, Crr = 5rr-1 =Er, C s = 5s - =E
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2) Three-dimensional effective properties of T300/5208 quasi-isotropic laminate, 1r/41S

C11 C12 C13  77.2 23.5 2.7 S11 S 12 S13  14.4 -4.3 -2.1

f 2 2 023 77.2 2.7 S22 S23 = 14.4 -2.1

C3 3  GPa 13.0 S3 3  TP-I 77.7

C44  0 0 5.7 0. 0. E1  I12 V13 69.7 0.30 0.03

C55 0 = 5.7 0. -V2 1 E2  -72 3  0.30 69.7 0.03

066 GPa 26.8 -V31 V3 2 E3  0.15 0.15 12.9

"44 544 -  623, C55 " 555 - 1 = G31, C66 56 6 512

3) Three-dimensional properties of IM6/Epoxy composites: 10] (unidirectional lamina)

Cxx Cxy Cxz 208.9 9.2 9.2 Sxx 5 xy 5, 4.9 -1.6 -1.6

CY C = 17.9 10.9 5y Sz = 89.3 -53.6

Czz GPa 17.9 Sz TPa-I  89.3

Cqq 0 0 3.5 0. 0. E x  lxy Lxz 203.0 0.02 0.02

Crr 0 8.4 0. Lyx Eu LVz = 0.32 11.2 0.60

CSS GPa 8.4 Lzx Vzy Ez  0.32 0.60 11.2

Cqq =qq -  Eq, Crr = 3rr -1 = Er' Css =5 -= Es
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4) Three-dimensional effective properties of IM6/Epoxy quasi-isotropic laminate, [nt/4]s

C11 C12 C13  87.1 26.7 4.4 S11 S12 S13 12.8 -3.8 -2.6

C 2 2 C 23  8 67.1 4.4 S22 S23 = 12.8 -2.6

C3 3  GPU 15.4 S3 3  TPa-1  66.3

C4 4  0 0 r 5.0 o. o. E, V12 V13 78.4 0.30 0.04"

C5 5  0 = 5.0 0. LV2 1 E2  V2 3 = 0.30 78.4 0.04

C66 GPa 30.2 V3 1 LV3 2 E3  0.20 0.20 15.1

C44 = 544 -1 = G23, C5 5 = 555
- 1 = G3 1 , C66 = 566 -1 = G12

5) Three-dimensional properties of E-Glass/Epoxy composites: [0] (unidirectional lamina)

Cxx Cxy Cxz 41.6 5.8 5.8 "Sxx 8x xz '25.9 -6.7 -6.7

CYY Cyz 13.7 8.6 5 y q z 120.9 -72.6

Czz GPB 13.7 Jzz J TPa-  120.9

Cqq 0 0 2.6 0. 0. Ex  Vxy Vxz 38.6 0.06 0.06

Crr 0 = 4.2 0. Vyx Ey Vyz = 0.26 8.3 0.60

CSS GPa 4.2 Vzx Vzy Ez  0.26 0.60 8.3

Cqq =qq -1 = Eq, Crr = Srr-1 = Er, Css = 8ss - = ES

6) Three-dimensional effective properties of E-Glass/Epoxy quasi-isotropic laminate,
lt/4Is
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C11 C12 C13  22.3 7.4 4.8 S11 S12 S13  52.7 -14.2 -15.0

C 2 2 C 23 - 22.3 4.8 S22 S2= 39.9 -15.0

C3 3  GPa 12.3 S33 TPa-  93.3

C44  0 0 3.2 0. 0. El V12 v13 19.0 0.27 0.16

C5 5  0 = 3.2 0. V2 1 E2  V2 3 = 0.27 19.0 0.16

C66 GPa 7.5 131 L3 2 E3  0.29 0.29 10.7

C4 4 = 544- 1 = G2 3 , C55 = 555 -1 = G3 1, C66 = -66 -1 = G12
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Appendix B

INSTRUCTIONS FOR EXECUTING THE FORTRAN PROGRAM "sphere"

To execute the code one needs to open the application file "sphere apl", then sequentially follow the

input-output sequence. The code uses a material data file "matdat.spr". This file contains the

effective stiffness properties of quasi-isotropic laminates, and strength properties and Young's

moduli of the unidirectional plies. The data format of the file is printed on a following page. One

can easily edit the file to modify the built-in data or add new data. The method of calculating the

three-dimensional effective stiffnesses is presented earlier in Appendix A. A printout of the input-

output sequence of an execution run of the code is also included in this report.
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sphere.for Thu, Sep 6, 1990

PROGRAM SPHERE
C

c-- This procedure is to do stress and failure analyses of a thick
c-- multilayered sphere subjected to INTERNAL, EXTERNAL pressures.
c-- Each layer is assumed to be composed of quasi-isotropic lay ups,
c-- each quasi-isotropic layer is thus assumed to behave as
c-- transversely isotropic layer (isotropic plane is theta-phi
c-- plane, perpendicular to the radial direction). The code reads
c-- Material data from an existing data file named 'matdat.spr'.
c-- The material data are given in 'SI' units. The material
c-- data represent the three-dimensional effective properties r'
c-- a quasi-homogeneous lay up. The format for the material data
c-- file is given below. The field length for numenric data:E9.3
C-- ********************************************************

c-- number Name C11 C12 C13 C22 C23
c-- C33 C44 C55 C66 X
c-- X' Y Y' S Fxy*
c-- Fyz* alpl alp2 bta2 Em*
c-- El E2 nu21 nu32 Es
C---- ********************************************************
c-- The geometric and lay-up configurations can be given interactively
c-- which should be consistent with the unit used in the data file,
c-- 'matdat.spr'. A quadratic failure criterion (TSAI-WU) is used for
c-- predicting failure loads. The procedure is limited to
c-- analyzing rings (pressure vessels) of maximum 25 layers.

c-- developed by
c-- *******************************
c * AJIT K. ROY *
c-- * UDRI *

c * 300 College Park *

c * DAYTON, OH 45469-0001 *

c-- * (513) 255-9104 *

C---- **** ******************* *****

REAL KM
CHARACTER*9 DFl
CHARACTER*I TAB
DIMENSION SMII(25),SM12(25),SM13(25),SM33(25),KM(25),CM(25)
DIMENSION QUE(26),SGR(25,11),SGT(25,11),EU(25,11),CTII(25)
DIMENSION CTl2(25),CTl3(25),CT33(25),AR(25,ll),PROP(10,25)
DIMENSION STRR(25,li) ,STRT (25, 11)
DIMENSION AM(26),YY(25,1l),INDX(25)

C EXTERNAL F,FPRIM

COMMON /CLK/ SMII,SM12,SM13,SM33,KM,CM,AM
COMMON /STRNTH/ CTII,CTI2,CTl3,CT33,PROP
COMMON /SSDP/ SGR, SGT, STRR, STRT, EU,YY,AR

c-- the subroutine 'PLYLUP' is for sphere geometry, material
c property input, and calculations for layer stiffness and
c compliance.

CALL PLYLUP(INDX,QUE,NM,DF)

c-- the subroutine 'CALQUS' is for the calculatir;. of the
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sphere.for Thu, Sep 6, 1990 2

c interlayer tractions 'q'

CALL CAIQUS (NM, QUE)

c-- the subroutine 'STSDSP' is for the computation r the
c stresses, strains, and radial displacement

CALL STSDSP (NM, QUE,ND)

WRITE(-,-) 'INPUT OUTPUT FILE NAE (max 9 char)'
READ(-, I(A) I) DF1
OPEN(7,FILE=DF1, STATUS='UNKNOWN')

WRITE(-,*) 1-** PLEASE WAIT **

TAB = CHAR(9)
C

WRITE(7,*) 'inner radius(meter), outer radius(meter)'
WRITE(7,*) AM(i.) ,TAB,AM(NM+1)
WRITE(7,*) 'b/a SPHERE'
BOA = AM (NM+) /AM (1)
WRITE (7, *) BOA
WRITE(7,*) 'mat # r,meter sig(r),MPa sig(th)=sig(phi),

+MJPa'
WRITE(7,340) ((INDX(I),TAB,YY(I,J),TAB,

+ SGR(I,J)/l.E6,TAB,SGT(t,J)/.E6,J=,ND),I=1,NM)
WRTE(7,*) 'mat # r,meter eps(r) eps(th)=eps(phi)

+u(r) ,mm'
WPJTE(7,345) ((INDX(I),TAB,YY(I,J),TAB,

+ STRR(I,J),TAB,STRT(I,J),TAB,EU(I,J)*1000,J=1,ND),I=1,NM)
C
C

CALL STRIO (NM, ND, ITK, 3TK, ARMN, DF, INOX)
C

WRITE(7,*) 'mat # r(meter) strength ratio'
WRIrTE(7,342) ((INDX(I),TAB,YY(IJ),TABAR(I,J),J=l,ND),I=l,NM)
WRITE(7,*) 'FAILURE LOCATION & FAILURE PRESSURE'
WRITE(7,*) 'mat # r(meter), INT PRESSURE, EXT PRESSURE (in Pa)'
WRITE(7,345) INDX(ITK),TAB,YY(ITK,JTK),TAB,AR(ITK,JTK)*QUE(1),

+ TAB, AR (ITK, JTK) *QUE (NM+l)
WRITE (7, 360)

360 FORMAT('END OF OUTPUT')
340 FORMAT(2X,I2,Al,E12. 6,Al,E12.6,Al,E12. 6)
342 FORMAT(2X,I2,A1,E12. 6,Al,E12. 6)
345 FORMAT(2X, 12,Al,E12. 6,Al,E12. 6,Al,E12. 6,Al,E12. 6)

CLOSE (7, STATUS='KEEP')
STOP
END

SUBROUTINE PLYLUP (INDX, QUE, NM, DF)

This subroutine is to obtain the geometric and lay-up
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sphere.for Thu, Sep 6, 1990 3

c-- configuration of the ring. The Ply Degradation Factor (DF)
C-- is also given interactively for the prediction of Last-Ply-Fail
c-- -ure or Burst Pressure.
c

CHARACTER TYP*21, WISH*7
REAL NPLY,KM
DIMENSION PROP(I0,25),AM(26),PLYPRP(25),SMII(25),SMI2(25)
DIMENSION SMI3(25),SM33(25),KM(25),CM(25)
DIMENSION CTII(25),CTI2(25),CTI3(25),CT33(25)
DIMENSION INDX(25),NPLY(25),QUE(26)

C
COMMON /CLK/ SM11,SM12,SM13,SM33,KM,CM,AM
COMMON /STRNTH/ CTII,CTI2,CTI3,CT33,PROP

C

WRITE (*, 21)
21 FORMAT(/,'INPUT INNER DIAMETER',/,'?')

READ(*,*) DMTINR
c DMTINR=2.0
C LNTH=. 0
C

WRITE(*,*) 'INPUT THE VALUE OF b/a OF THE SPHERE'
READ(*,*) BOAS

C
WRITE (*, 22)

22 FORMAT('INPUT INTERNAL PRESSURE & EXTERNAL PRESSURE',/,'?')
READ (*,*) QUE1,QUEN

C QTTE!=I. 0
C QUEN= .0
C
C

OPEN(8,FILE='matdat.spr',STATUS='OLD')
C

WRITE (*, 10)
10 FORMAT(/,T25, '****MATERIAL INFORMATION****')

WRITE(*, 11)
11 FORMAT(/,T15,'INDEX NUMBER MATERIAL DESCRIPTION',

+ /,T15, ' ------------------- )
C

I = 0
1 CONTINUE

I = I+l
READ(8,20,END=2) IND,TYP, (PROP(I,J),J=l,25)

20 FORMAT(2X,I2,A21,T27,5E9.3,/,T27,5E9.3,/,T27,5E9.3,/,T27,5E9.3
+ ,/,T27,5E9.3)

C
WRITE(*,12) IND,TYP

12 FORMAT(T23,I2,T30,A23)
GOTO 1

C
2 I = I-I

CLOSE(UNIT=8, STATUS='KEEP')

ITR = 0
C WRITE(*,*) 'input MATERIAL NUMBER for the mandiel'
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sphere.for Thu, Sep 6, 1990 4

C READl(,* INDX (1)
WRITE(-,-) '** INPUT PLY LAYUP INFORMATION (max 25 layers)***,

C51 IR=1R+l
WRITE(*, *)

C
C WRITE(-,*) 'INPUT THE VALUE OF THE DEGRADATION FACTOR'
C WRITE(*,*) I for INTACT plies: DF=l'
C READ(*,*) DF

DF=1 .0
C BOAS= l.+l./AOTS

c mandrel displacement
AM(1) 0.5*DMTINR

C AM(2) =BOAM*AM(l)

C NPLY (1) AM (2) - AM (1)

WRITE(*,*) IINPUT NO OF LAYERS (max 25 layers)'
READ(*,*) NM

Do 25 I=l,NM+l
QUE(I) = 0.0

25 CONTINUE

QUE41) =QUEl

QUE(NM+l) = QUEN

DO 51 IR=l,NM

WRITE(*,*) **LAYERS ARE NUMBERED FROM INSIDE TO OUTSIDE**
WRITE (*,-*)
WRITE(*,-) ~*~FOR LAYER ',IR,' **

WRITE(*,*)'INPUT MATL INDEX NO. & THICKNESS FACTOR'
C

READ(-,*) INDX(IR),NPLY(IR)
NPLY (IR) =NPLY (IR) *(BOAS-l. ) *A~(l)

51 CONTINUE

DO 53 IR=l,NM

DO 50 I - 1,25
PLYPRP(I) =PROP (INDX (IR), I)

50 CONTINUE
C
C_- degradation of effective stiffness and compressive strength

PLYPRP(2) =DF* PLYPRP(2)
PLYPRP(1) =DF*PLYPRP(3)
PLYPRP(5) =DF* PLYPRP(5)

C

AM(IR+l) = AM(IR) + NPLY(IR)
CM(IR) = AM(IR)/AM(IR4-l)

C
CALL BTCLCT (PLYPRP, IR)
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sphere for Thu, Sep 6, 1990 5

C
KM(IR) = O.5-SQRT(1.+8.*(CT11(IR)+CTl2(IR)-CT13(IR))/CT33(IR))

C
C WRITE(*,*) 'DO YOU WANT TO ADD ANOTHER PLY LAYUP? (Y OR N)'

C READl(-, '(A)) WISH
C
A3 CONTINUE

C IF(WISH .EQ. 'Y') GOTO 51
C

RETURN
END

C
C

SUBROUTINE BTCLCT (PLYPRP, ITR)

c-- this subroutine is to perform some intermediate calculations
c-- required for the routine 'CAIQUS1 .
c

REAL KM
C

DIMENSION PLYPRP(25),SMTX(6,6),CTl1(25),CTl2(25),CT13(
25 )

DIMENSION CT33(25),AM(26),CTX(6,6),PROP(l0,2 5)
DIMENSION XX(6,l),KM(25),CM(25)
DIMENSION SMil (25) , M12 (25) , M13 (25) , 5M-3(25)

COMMON /CLK/ SMl1,SM1l2,SM13,SM33,KIA,CM,AM
COMMON /STRNTH/ CTll,CT12,CT13,CT33,PROP

DO 10 I - 1,6
XX(I,1) =0.0

DO 11 J = 1,6

CTX(IJ) =0.0

SmrrX(IJ) =0.0

11 CONTINUE
10 CONTINUE

C

CTX(1,1) = PLYPRP (1)
CTX(1,3) = PLYPRP(3)

CTX(2,1) = CTX(l,2)
CTX(2,2) = PLYPRP (4)
CTX(2,3) = PTYPRP (5)
CTX(3,1) = CTX(1,3)
CTX(3,2) = CTX(2,3)
CTX(3,3) = PLYPRP(6)
CTX(4,4) = PLYPRP (7)
CTX(5,5) = PLYPRP(8)
CTX(6,6) = PLYPRP (9)

DO 15 1=1,6
DO 16 J=1,6
SMTX(I,J) = CTX(I,J)

16) CONTINUE
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sphere.tor Thu, Sep 6, 1990 6

15 CONTINUE

CALL GAUSSJ(SMTX,6,6,XX,1,1)
C

C
CTll(ITR) = CTX(1,l)
CT12(ITR) =CTX(l,2)
CT13(ITR) =CTX(l,3)
CT33(ITR) = CTX(3,3)

C
SMll(ITR) = SMTX(1,l)
SMl2(ITR) = SMTX(l,2)
SM13(ITR) = SMTX(l,3)
SM33(ITR) =SMTX(3,3)

C
RETURN
END

C
SUBROUTINE CALQUS (NM, QUE)

c-- this subroutine is to calculate the inter-layer normal pressure
c-- Q's from a set of simultaneous equations.

REAL KM. MUE
REAL AA,BB
DIDENSION SMll(25),SM12(25),SM13(25),SM33(25),CM(25)
DIMENSION AA(25,25),QUE(26),ALF(25),BTM(25),BB(25,1)
DIMENSION SGR(25,1l),SGT(25,l1),STRR(25,l1),FROP(l0,25)
DIMENSION STRT(25,ll),EU(25,ll),YY(25,1l),AR(25,11)
DIMENSION CTll (25) ,CTl2 (25) ,CTl3 (25) ,CT33 (25)
DIMENSION AM(26),KM(25),MUE(25),GMA(25)

COMMON /CLK/ SMll,SMl2,SMl3,SM[33,KM,CM,AM
COMMON /STRNTH/ CTll,CTl2,CTl3,CT33,PROP
COMMON /SIZE/ AA,BB
COMMON /SSDP/ SGR, SGT, STPR, STRT, EU, YY, AR

DO 10 I = 1, NM-l

BB(I,l) = 0.0

DO 11 J = ,NM-1
AA(I,J) = 0.0

11 CONTINUE
1C CONTINUE

DO 20 I=l,NM

MUE(I) = (l.-CM(I)**(2.*KM(I) ))*((KM(I)+.5)*CT33(I)
I -2.*CT13(I))*((KM(I)-.5)*CT33(I)+.2.*CT13(I))
ALF(T) = 2.*KM(I) *CT33(I)*CM(I)** (KM(I)+.5) /MUE(I)

BTM(I) = (l.-CM(I)-*(2.*KM(I)) )*(.5*CT33(I)-..2CTl3(I))
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/MUE (I)
GMA(I) = KM(I)*(1.+CM(I)**(2.*KM(I)))*CT33(I)/MUJE(I)

20 CONTINUE

IF (NM .EQ. 1) GOTO 50

IF((NM-1) .EQ. 1) THEN

AA(1,1) = (BTM(2).-BTM(l)-GMA(2)-GMA(1))*AM(2)

QUE (2) =BB (1) /AA (1, 1)
ELSE

D0 40 I=1,NM-1

IF(I .EQ. 1) THEN

BB (1,1) = -AM (I)*-ALF (I) *QUE (1)
AA(I,I) = AM(2)*(BTM(I+1)-BTM(I)-GM4A(I+1)-GMA(I))

ELSEIF (I .EQ. (NM~ _-, THEN

AA(I,NM-1) = 1M(I+1)*(BTM(I+1)-BTM(I)-GMA(I+1)-GMA(I))
AA(I,NM-2) AM(I)*ALF (I)

ELSE

BB(I,1) =0.0
AA(I,I-1) = AM(I)*ALF (I)
AA(I,I) = AM(I4+1)*(BTM(I+1)-.BTM(I)-GMA(I+i)-GMA(I))

AA(I,I+l) = AM(I+2)*ALF(I+1)/CM(I~1)

ENDIF

40 CONTINUE

NMM1 = NM-i
IFAIL = 0

CALL GAUS-SJ(AA,NI4M1,25,BB,1,1)

DO 30 Il, NM-i
QUE(I+1) = BB (1,1)

30 CONTINUE

END IF

50 CONTINUE

RETURN
END

C
SUBROUTINE STSDSP (NM, QUE, ND)
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c-- to calculate stress, strain and displacement field based on
c-- the thick sphere formulation.

REAL KM

DIMENSION YY(25,ll),SGR(25,ll),SGT(25,ll),EU(25,ll),SMl(25)
DIMENSION SMl2(25),SMl3(25),SM33(25),CM(25),AM(26),KM(25)
DIMENSION CTll(25),CTl2(25),CTl3(25),CT33(25),PROP(l0,25)
DIMENSION AR(25,ll),STRR(25,ll),STRT(25,ll)
DIMENSION QUE(26)

COMMON /CLK/ SMll, SM12, SM13,SM33,KM[,CM,AM
COMMON /STPNTH/ CTll,CTl2,CTl3,CT33,PROP
COMMON /SSDP/ SCR, SGT, STRR, STRT, EU, YY, AR

WRITE(-,-*)
WRITE(*,*) 'INPUT NO OF EQUIDISTANT CALCULATION POINTS THRU
+THICKNESS IN EACH LAYER'

WRITE(*,*) I'(max 11, min 2)'
READ(*,*) ND

DO 40 I =l,NM

FCT =(AM(I+l)-AM(I))/(ND-l)

1 .1 (1.-CM(I)** (2.*KM(I)))
CNST2 =(KM(I)-.5)*CT33(I) + 2.*CTl3(I)
CNST3 =(KM(I)+.5)*CT33(I) - 2.*CT13(I)
CNST4 =CT11(I)+CTl2(I)+(KM(I)-.5)*CT13(I)

CNST5 =CT11(I)+CT12(I)-(KM(I)+.5)*CT13(I)

DO 45 J = 1,ND

YY(I,J) = AM (I) + (J-1) *FCT

c-- I for layers, increasing from inside to outside
c_- J for calculation points, incresing from inside to outside

c-- radial stress
SGR(I,J) = CNSTl*((QUE(I)*CM(I)**(KM(I)+1.5)-QUE(I+1))*

*1 (YY(I,J)/AM[(I+l))**(KM(I)-l.5) -
2 (QUE(I)-QUE(I+1)*CM(I)**(KM(T-)-l.5))*
3 CM(I)**(KM(I)+l.5)*(AM(I+1)/YY(I,J))**(KM(I)+1.5))

* c-- hoop stress
SGT(I,J) = CNST1*(CNST4/CNST2)*(QUE(I)*CM(I)**(KM(I)+1.5)
1 -QUE(I+l))*(YY(I,J)/AM(I+l))**(KM(I)-l.5) +
2 CNSTl* (CNST5/CNST3)* (QUE(I)-QUE(I+l)*
3 CM (I) * *(KM (1)-1. 5)) *
4 CM(I)** (KM(I)+l.5)* (AM(I+l)/YY(I,J) )**(KJM(I)+1.5)

45 CONTINUE
40 CONTINUE

DO 50 I=l,NM
Do 60 J=l,ND
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c-- radial strain
STRR(I,J) = SM33(I)*SGR(I,J)+2.*SMl3(I)-SGT(I,J)

c-- hoop strain
STRT(I,J) = SMl3(I)-SGR(I,J)+(SMll(I)+SMl2(I))*SGT(I,J)

c-- radial displacement
EU(I,J) =STRT(I,J)*YY(I,J)

60 CONTINUE
50 CONTINUE

RETURN
END

C
SUBROUTINE STRIO (NM, ND, ITK, 3TK,ARMN, DF, INDX)

c-- to obtain the strength ratio for predicting the failure
c-- pressure.

DIMENSION SMll(25),SM12(25),SMl3(25),SM33(25),KM(25)
DIMENSION CM(25),AM(25),INDX(25),PROP(10,25),CMTX(6,6)
DIMENSION CTll (25) ,CT12 (25) ,CTl3 (25) ,CT33 (25)
DIMENSION SGR(25,ll),SGT(25,ll),STRR(25,ll),STRT(25,ll)
DIMENSION EU(25,ll),YY(25,ll),AR(25,ll),PLYPRP(25)
DIMENSION GE(6,6),GEE(6),AF(6,6),AFF(6)

COMMON /CLK/ SMl1l,SM12, SM13,SM[33,KM[,CM[,AM
COMMON /STRNTH/ CTll,GTl2,CTl3,CT33,PROP
COMMON /SSDP/ SGR, SGT, STRR, STRT, EU, YY, AR

DO 2 I=1,6
AFF(I) =0.0

Do 3 J=1,6
AF(I,J) =0.0

3 CONTINUE
2 CONTINUE

DO 10 I=l,NM

DO 50 IR = 1,25
PLYPRP (IR) = PROP (INDX (I) ,IR)

50 CONTINUE

C-- degradation of unidirectional stiffness properties

PLYPRP(1l) = DF**0.2*PLYPRP(11)
PLYPRP(22) = DF* PLYPRP(22)
PLYPRP(23) = DF*PLYPRP (23)
PLYPRP(25) = DF* PLYPRP(25)

c-- 3: fiber direction
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c-- 1 & 2: transverse to the fiber
AF(l,l) = 1./(PLYPRP(12)*PLYPRP(13))
AF(2,2) = AF(l,l)
AF(3,3) = l./(PLYPRP (l0)*PLYPP(11))
AF(4,4) = 1l. /(PLYPRP (14)**2)
AF(5,5) = AF(4,4)
AF(6,6) = 0.60/PLYPRP(l0)
AFF(l) = l./PLYPRP(12) - l./PLYPRP(13)
AFF(2) = AFF(l)
AFF(3) = 1./PLYPRP(l0) - l./PLYPRP(ll)
AF(l,2) = PLYPRP(16)*SQRT(AF(1,l)*AF(2,2))
AF(1,3) = PLYPRP(15)*SQRT(AF(l,l)*AF(3,3))
AF (2, 3) =AF(l,3)
AF(2,l) = AF(l,2)
AF(3,l) = AF(1,3)
AF(3,2) = AF(2,3)

CALL CTX3D (PLYPRP, Cr-TX)

CALL G3DCLT(CMTX,AF,AFF,GE,GEE)

DO 11 J=1,ND

AA = ABS((GE(3,3)+2.*GE(3,2)+GE(2,2))*STRT(I,J)**2
1 +2.*(GE(3,l)+GE(2,l))*STRT(T,J)*STRR(I,J)
2 +GE (1,1)*-STRR(I, J)**2)

BB = (GEE(3)+GEE(2))*STRT(I,J)+GEE(1)*STRR(I,J)

C--- strength ratios based on thick preeuse vessel solution
APII,J) = -(BB/(2.*AA)) +SQRT((BB/(2.*AA))**2 +l./AA)

11 CONTINUE
10 CONTINUE

c-- AJPMN: minimum value of streng-th ratios based on thick pressure
c-- vessel solution.

CALL VARMN (AR, ARMN, NM, ND, ITK, JTK)

RETURN
END

SUBROUTINE VARMN (AR, ARMN, NM, ND, ITK, JTK)

DIMENSION AR(25,ll)

ITK = 1
JTK = 1
APRMN = AR (1,1)
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DO 12 I=1,NM
DO 11 J = 1,ND

IF(AR(I,J) .GE. ARMN) GOTO 11
ITK = I
JTK = J
ARMN = AR(I,J)

11 CONTINUE
12 CONTINUE

RETURN
END

C
SUBROUTINE G3DCLT (CTX,AF,AFF,GE, GEE)

DIMENSION CTX(6,6),GE(6,6),TMP1(6,6),GEE(6),TMP2(6)
DIMENSION AF(6,6), AFF(6)

DO 5 I=1,6
DO 7 J=l,6
TMP2(I) = 0.0
TMPI(I,J) = 0.0
GE(I,J) = 0.0

7 CONTINUE
5 CONTINUE

DO 10 I=1,6
DO 11 J=1,6
DO 12 K=1,6
TMP1(I,J) = TMP1(I,J) + AF(I,K)*CTX(K,J)

12 CONTINUE
11 CONTINUE
10 CONTINUE

DO 20 I=1,6
DO 21 J=1,6
DO 22 K=1,6
GE(I,J) = GE(I,J) + CTX(I,K)*TMP1(K,J)

22 CONTINUE
21 CONTINUE
20 CONTINUE

DO 30 I=1,6
DO 31 J=l,6
TMP2(I) = TMP2(I) + AFF(J)*CTX(J,I)

31 CONTINUE
30 CONTINUE

DO 40 I=1,6
GEE(I) = TMP2 (I)

40 CONTINUE

RETURN
END

C--
c-- the routine for solving a system of simulteneous equations
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SUBROUTINE GAUSSJ(A,N, NP, B,M,MP)
PARAMETER (NMAX=50)
DIMENSION A(NP,NP) ,B(NP,MP) ,IPIV(NMAX) ,INDXR(NMAX) ,INDXC(NMAX)
DO 11 J=1,N

IPIV (J) =0
11 CONTINUE

DO 22 I=1,N
BIG=O0.
DO 13 J=1,N

IF(IPIV(J) .NE.1)THEN
DO 12 K=1,N

IF (IPIV(K).EQ.0) THEN
IF (ABS(A(J,K)) .GE.BIG) THEN

BIG--ABS (A (J, K))
IROW=J
ICOL=K

END IF
ELSE IF (IPIV(K).GT.1) THEN
PAUSE 'Singular matrix'

END IF
12 CONTINUE

ENDI F
13 CONTINUE

IPIV(ICOL)=IPIV(ICOL) +1
IF (IROW.NE.ICOL) THEN
DO 14 L=-1,N

DUM=A (I ROW, L)
A (I ROW, L) =Ax (I COL, L)
A (I COL, L) =DUM

14 CONTINUE
DO 15 L=1,M

DUM=B (IROW, L)
B (I ROW, L) =B (I COL, L)
B (ICOL, L)=DUN

15 CONTINUE
END IF
INDXR (I) =IROW
INDXC (I) =ICOL
IF (A(ICOL,ICOL).EQ.0.) PAUSE 'Singular matrix.'
PIVINV=1.IA (ICOL, ICOL)
A (ICOL, ICOL,) 1.
DO 16 L=1,N

A(ICOL,L)=A(ICOL,L) *PIVINV
16 CONTINUE

DO 17 L=1,M
B (ICOL, L) =B(ICOL, L) *PIVINV

17 CONTINUE
DO 21 LL=1,N

IF (LL.NE. ICOL) THEN
DUM=A (LL, ICOL)
A (LL, ICO,) '-.
DO 18 L=1,N

A (LL,T) =A (1T-,L)-A (I COL, L)*DUM
18 CONTINUE

DO 19 L-L,M
B(LL,LII=B (LL,L)-B (ICOL,L) *DUM

19 CONTINUE
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END IF
21 CONTINUE
22 CONTINUE

DO 24 L=N,1,-1
IF(INDXR(L) .NE.INDXC(L) )THEN

DO 23 K=l,N
DUM=A(K,INDXR(L))
A(K,INDXR(L) )=A(K,INDXC(L))
A (K, INDXC (L) ) =DUM

23 CONTINUE
ENDIF

24 CONTINUE
RETURN
END

C--
SUBROUTINE CTX3D (PLYPRP, CTX)

c-- formulation of three-dimensional PLY stiffness matrix

REAL NU21
DIMENSION PLYPRP (25) ,CTX (6, 6)

NU21 = PLYPRP (23) *PLYPRE (22) /PLYPRP (21)
VE = l./((l.+PLYPRP(24))*(l.-PLYPRP(24)-~2.*PLYPRP(23)*NU21))

C

CTX(l,l) = (1.-NU2l*PLYPRP(23))-VE,*PLYPRP(22)
CTX(1,2) = (PLYPRP(24)+NU21*PLYPRP(23))*VE*PLYPRP(22)
CTX(1,3) = NU21*(l.+PLYPRP(24))*VE*PLYPRP(21)
CTX(2,1) =CTX(1,2)
CTX(2,2) = CTX(,l)
CTX(2,3) = CTX(1,3)
CTX(3,1) = CTX(1,3)
CTX(3,2) = CTX (2, 3)
CTX(3,3) = (l.-PLYPRP(24)**2)*VE*PLYPRP(21)
CTX(4,4) = PLYPRP (25)
CTX(5,5) = CTX(4,4)
CTX(6,6) = (l.-PLYPRP(24)-2.*NTJ21*PLYPRP(23))*VE*PLYPRP(22)/2.

RETURN
END
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Listing of the material data file "matdat.spr" for SPHERE

1T3/5203(pi/4] .772E11 .235Ell .27E10 .772E11 .27E10
.13E11 .57E10 .57E10 .268E11 .15E10
.15E10 .40E8 .246E9 .68E8 -0.5E0
-.80E0 .02E-6 22.5E-6 .6E-6 0.20
.181E12 .103EI1 .28E0 0.52E0 .717E10

2 f-IM6/EP~pi/4J .871E11 .267Ell .44E10 .871E11 .44E10
.154E11 .50E10 .50E10 .302E11 .35E10
.154E10 .56E8 .15E9 .98E8 -0.50E3
-.80E0 .0 0.0 0.0 0.1
.203E12 .112E11 0.32E0 0.60E0 .84E10

3 E-Glassrpi/4] .223E11 .737E10 .477E10 .223Ell .477E10
.123E11 .319E10 .319E10 .747EI0 .106E10
.61E9 .31E8 .118E9 .72E8 -0.5E0
-.80E0 8.6E-6 22.lE-6 0.6E-6 0.07
.386E11 .82?E10 0.26E0 0.6OEO .414E10

4 AL 2014 .101E12 .462Ell .462E11 .101E12 .462Ell
.101E12 .276E11 .276E11 .276Ell .449E9
.897E9 .449E9 .897E9 .283E9 -0.5E0
-0.5E0 23.2E-6 23.2E-6 0.0 0.0
.725Ell .725E11 0.313E0 0.313E0 .276Ell

5 SS A!-!50 .284E12 .133E12 .133E12 .284E12 .133E12
.284E12 .75E11 .75Ell .75El1 .114E10
.228E10 .114E10 .228E10 .738E9 -0.5E0
-0.5E0 11.7E-6 11.7E-6 0.0 0.0
.200E12 .200OE12 0.318E0 0.318E0 .750E11

Number Name Cl). C12 C13 C22 C23
C33 C44 C55 C66 X

X1Y Y1 S Fxy*
Fyz* alfi alf2 bta2 *
Ex Ey nu2l nu32 Es

CijIs are the elements of the effective stiffness matrix in Pa
Ei's are the elements of the Young's Moduli of an unidirectional ply in Pa
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This is the print out of the input-output sequence for the code "sphere".
This run is for a hybrid sphere of b/a=1.25, and 50% of thickness of
T300/5208 inside and rest of IM6/Epoxy outside. The sphere is subjected
to internal pressure.

INPUT OUTPUT FILE NAME

T3IM6

INPUT INNER DIAMETER

>1.0

INPUT THE VALUE OF b/a OF THE SPHERE
>1.25

INPUT INTERNAL PRESSURE & EXTERNAL PRESSURE

>1 0

****MATERIAL INFORMATION****

INDEX NUMBER MATERIAL DESCRIPTION

1 T3/5203[pi/4]
2 H-IM6/E?[pi/4]
3 E-Glass[pi/4]
4 AL 2014
5 SS AM350

* INPUT PLY LAYUP INFORMATION (max 25 layers)***

INPUT NO OF LAYERS (max 25 layers)

>2

** LAYERS ARE NUMBERED FROM INSIDE TO OUTSIDE **

FOR LAYER 1 ***
INPUT MATL INDEX NO. & THICKNESS FACTOR
>1 .5

** LAYERS ARE NUMBERED FROM INSIDE TO OUTSIDE **

FOR LAYER 2 ***
INPUT MATL INDEX NO. & THICKNESS FACTOR
>2 .5

INPUT NO OF EQUIDISTANT CALCULATION POINTS THRU THICKNESS IN EACH LAYER
(max 11, min 2)
>3

*** PLEASE WAIT ***
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LISTING OF THE OUTPUT FILE "T31M6"

inner radius(meter), outer radius (meter)
.500000 .625000

b/a SPHERE
1. 25000

mat # r,meter sig(r),a, sig(th)=sig(phi),Ma
1 0.500000E+00 -.100000E-05 0.244346E-05
1 0.531250E+00 -. 637914E-06 0.194125E-05
1. 0.562500E+00 -.377960E-06 0.162349E-05
2 0.562500E+00 -.377959E-06 0.179410E-05
2 0.593750E+00 -.166265E-06 0.159966E-05
2 0.625000E+00 0.OOOOOOE+00 0.149123E-05

mat # r,meter eps(r) eps(th)-eps(phi) u(r),mm
1 0.500000E+00 -.879822E-10 0.266238E-10 0.133119E-07
1 0.531250E+00 -.577207E-10 0.208252E-10 0.110634E-07
1 0-562500E+00 -.361736E-10 0.170920E-10 0.961423E-08
2 0.562500E+00 -.343097E-10 0.170920E-10 0.961423E-08
2 0.593750E+00 -.192543E-10 0.148012E-10 0.878822E- 08
2 0.625000E+00 -.765717E-11 0.134000E-10 0.837503E-08

mat # r(meter) strength ratio
1 0.500000E+00 0.240422E+09
1 0.531250E+00 0.307092E+09
2. 0.562500E+00 0.348892E+09
2 0.562500E+00 0.327183E+09
2 0.593750E+00 0.368268E+09
2 0.625000E+00 0.272434E+09

FAILURE LOCATION & FAILURE 2RESSURE
mat # r(meter), INT PRESSURE, EXT PRESSURE (in Pa)

1 0.500000E+00 0.240422E+09 0.OOOOOOE+00
END OF OUTPUT
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